Using SystemVerilog for Design

Karen Pieper
R&D Manager, HDL Compiler
Co-Chair, SystemVerilog Design Committee

g\ll[] Overview

EUROPE

2004

 What is SystemVerilog?

e Advantages for design

 Use model and synthesis results
e Food for thought

« Roadmap

2004

)
§_LJL] RTL Design and Verification Today

Specification

HDLs:
Verilog, VHDL

___ Design __Verification
=7 AIL ' T

Verifice
Environg ent

HDLs, HVL, C++
Home Grown, etc...

Multiple point tools
Inefficient tool interaction
Multiple Intent definitions
and coverage metrics

Wl

Unifying Design & Verification

EUROPE

2004

Specification

lll.....
a

HVL ¢
anun®
Verification

\
ll[] What is SystemVerilog?

EUROPE

2004

Unifies Design and Verification for SoCs

SystemVerilog 3.1 - Verification « SystemVerilog Benefits
— Higher designer productivity
Automated , Comprehensive e
Testbench Assertions APIs — Faster and smarter verification
: : — Evolves Verilog into first Hardware

SystemVerilog 3.0 - Design Description & Verification Language
CommunicationJAdvancedfConcise Design § Datatypes * Accellera standard tOday

Interfaces Verilog Features © ° Supported by mu|t|p|e vendors

Verilog 2001 » Leading design teams are preparing

for full-scale adoption
Verilog 1995

100% compatible with Verilog J

)
ll[] SystemVerilog Benefits

EUROPE

2004

« 100% Compatible
with Verilog!!!

IDL Simulation e

e 2-5X Faster Verification

SysternVeriloc

e Capture Design Intent
with Single Point of

Better Verification SpeC|f|cat|on

g\ll[] Design Extensions of Verilog

EUROPE

2004

« Communications interfaces
— Intended to describe communication among multiple modules
— Collects all of the description of a bus in one location

 Enhanced Verilog
— Specify design intent

— Support transition from reg use to wire use without changing the
declaration

— Add full_case and parallel_case directives to the language
e Concise design features

— Type as a parameter

— C-style assignment operators +=, ++

— Simplification of port connection on instantiation
e Datatypes (C)

— Data abstraction is improved with structures, unions

— 2-state and 4-state variables are available

W

m[] Determining Synthesizability
ﬂﬂ |

d:é‘..“-

e Design goal
— Support common design methodologies

» Multiple engineers synthesizing their own blocks
iIndependently

» Use of formal verification techniques to ensure that RTL
and gates represent the same design
* Requirements of the subset
— Independent synthesis and verification of each module
— Single “correct” interpretation of every design
— Statically determined hardware

)
HS.QL] Advantages of SystemVerilog for Design

* Improved specification

— Localization of functionality
— Exact specification of intent

e Concise constructs for focused development
— Line count correlates strongly with number of bugs

e Convenience In data abstraction
— Correct data representation for many uses
« Unifying design and verification

— Designs can specify requirements and guarantee they are
met

10

)
ll[] Improved Specification

EUROPE
2004
e Some issues in design today:

— Adding a port to a bus, or changing the operation of a bus
requires correct editing of all of the modules that touch that
bus

»“l don’t want to have to change all those places...”

— Synthesis tools do what you say rather than what you want
»“l did not mean to specify a latch there....”

SystemVerilog has a solution

)
Sll[] No Localization of Functionality

11

2004

Module Top Module A
Access HW

Bus Instantiation

Module B
Access HW

 Descriptions are spread throughout the design
 All designers must know detalls of the access

* Any modifications must be made throughout the design

)
Sll[] Localization of Functionality

2004

12

Module A

Bus API Call

Module B

Bus API Call

Bus Instantiation Bus Description
Bus Instantion HW

« Descriptions are localized Bus Access HW
 One designer knows details of access

« Modifications (and replacements) are made in one location
 Eases understanding, debugging, and reuse

Source code view:

Module Top
A Instantiation

B Instantiation

)
Sll[] Localization of Functionality

EUROPE

13

2004
e Language features providing localization of
functionality
— Structures and user defined data types
— Types as parameters
— Interfaces
— Global functions

i

Structures and User Defined Data Types

EUROPE

004

.

Verilog SystemVerilog

module fifo (clk, rstp, din_src,
din_dst, din_data,readp,writep,
dout_src,dout _dst, dout data,
emptyp, fullp);

typedef struct {
bit [7:0] src;
bit [7:0] dst;
bit [31:0] data;

Define Once

input clk;
input rstp;)
input [7:0] din_src; } packet_t; [
input [7:0] din_dst;
input [31:0] din_data;
input readp: module fifo (Use many times
input writep; L Clk’_
output [7:0] dout_src; !nput r§tp,
output [7:0] dout_dst; Input packet_t din, Easy to
output [31:0] dout_data; Input readp; read,
input writep; debug
output emptyp; output packet t dout;
output fullp; output logic emptyp;
output logic Tfullp

);

7

]

Structures and User Defined Data Types

EUROPE
004

Verilog SystemVerilog

module fifo (clk, rstp, din_src,

di?_dst, din_data2, din_data,readp,| | typedef struct { BietE e
writep, dout src, dout dst, bit [7:0] src;

dout_data, dout_data2, emptyp, bit [7:0] dst;

Tfullp); bit [31:0] data;
input clk; bit [31:0] dataz;
input rstp; } packet t;
input [7:0] din_src; [~
input [7:0] din_dst;
input [31:0] din_data;
input [31:0] din_data?; module Fifo (Use many times
input readp; input clk,
input writep; input rstp,
output [7:0] dout_src; input packet t din Easy to
output [7:0] dout_dst; input - rea&b read,
output [31:0] dout_data; R writeé debug,
output [31:0] dout_dataz; output packet t dout, Metse
output emptyp; _ — ?
output fullp: output Iog!c emptyp,

{:;7 output logic fullp
- And referencing code below E ZC;7’

16

)
ll[] Structure / Array Duality

OPE

o

RS
=
—
=

« Unpacked structures have strong type checking
— As in VHDL

« Packed structures have an array overlay

typedef struct packed { typedef struct {

logic [3:0] a; logic [3:0] a;

logic [3:0] b; logic [3:0] b;
} packed_t; } unpacked_t;
packed t pt; unpacked t pt;
logic [7:0] array; logic [7:0] array;
array|[3:0] = pt.b; array|[3:0] = pt.b; // ok
array[3:0] = pt[3:0]; array[3:0] = pt[3:0]; // error
pt = pt; pt = pt; // ok
pt = array; 15;7’ pt = array; // erro

e Synthesis

— Recommend unpacked structures for better area, timing

17

)
ll[] Types as Parameters

EUROPE
2004
Fifo Example: « One module, many types
def i I I
typede sg:!r;:JCE :{0] ore- fifo int_fifo (....);
bit [7:0] dst; fifo packet_fifo #(packet_t) (...);

bit [31:0] data;
bit [31:0] dataZ?;

} packet_t; ¢ Creates generic IP for reuse

o Address issues in one module

module fifo #(parameter type t = int)| SyntheSiS
¢

input clk, e Same as Integer parameters
mput I’Stp,

input t din,

input readp, 1

i o *VVHDL has _unconstralned arrays
output t dout, *Not arbitrary types

tput 1 i typ, . . .

ot e G . ol «Avoid conversion functions

output logic fullp 7
);

18

g\ll[] Interfaces

EUROPE

2004

o Separate intermodule communication description and
use

 Communication objects are described in one place
— Localizes port updates
— Allows an API description of bus interface to users
— Simple to exchange bus style
— Allows verification to be embedded supporting early,
thorough testing

e Functionality does not exist in VHDL today

Snl][] Simple Design

EUROPE

2004

19

Synthesized Design:

Top

Source Code:

module CPU ;

endmodule

modulle RAM () ;

endmodule

module Top;

CPU CPUQ);
RAM RAM(Q);
endmodule

EUROPE

)
Sl][] Interface Instantiation

20

2004

Synthesized Design:

Top

clk
data
address
request
grant
ready

interface chip bus (;

wire request, grant, ready;

wire [47:0] address;
wire [63:0] data;

endinterface

module CPU ;

enamodule

P
modulle RAM () ;
enamodule

module Top;

chip_bus a(Q);

CPU CPUQ);

RAM RAMQ);
endmodule

)]
l][] Interface As A Port

EUROPE

2004

interface chip bus ();

wire request, grant, ready;
: - wire [47:0] address;
Synthesized Design: wire [63:0] data;
Top
endinterface

module CPU (chip _bus 10);

endmodule

module RAM (chip_bus pins);

endmodule
T—— data——— |

T address—
T request—
T—grant——
T——ready—

module Top;

chip_bus a(Q);

CPU CPU(Q);

RAM RAM(a);
endmodule

|

EUROPE

Interface Modports

22

2004

Synthesized Design:

Top

address
request
grant
ready

RAM

data
address
request
grant
ready

interface chip bus ;
wire request, grant, ready;
wire [47:0] address;
wire [63:0] data;

modport cpu (output request...);
modport ram (input request...);

endinterface

module CPU (chip bus.cpu 10);

endmodule

P
module RAM (chip_bus.ram pins);
endmodule R

module Top;

chip_bus a(Q);

CPU CPU(a.cpu);

RAM RAM(a.ram);
endmodule

EUROPE

)
l] Interface With a Port

2004

Synthesized Design:

Top

address
request
grant
ready

RAM

data
address
request
grant
ready

interface chip_bus (input wire clk);
wire request, grant, ready;
wire [47:0] address;
wire [63:0] data;

modport cpu (input clk, output request...);
modport ram (input clk, Input request...);

endinterface ZC:;7'

module CPU (chip _bus.cpu i10);

endmodule

P
module RAM (chip_bus.ram pins);
endmodule R

module Top;
wire clk;
chip_bus a(clk);
CPU CPU(a-.cpu);
RAM RAM(a.ram);

endmodule o

]

EUROPE

Interface Always Blocks

24

2004

Synthesized Design:

Top

CPU

clk

address
request
grant
ready

always ...

RAM

clk
data
address
request
grant
ready

interface chip_bus (input wire clk);
wire request, grant, ready;
wire [47:0] address;
wire [63:0] data;

always ..

modport cpu (input clk, output request...);
modport ram (input clk, Input request...);

endinterface ZC:;7'

module CPU (chip _bus.cpu i10);

endmodule

P
module RAM (chip_bus.ram pins);
endmodule R

module Top;
wire clk;
chip_bus a(clk);
CPU CPU(a-.cpu);
RAM RAM(a.ram);

endmodule —

EUROPE

)
l] Interface Functions

25

2004

Synthesized Design:

Top

CPU

clk

data
address
request
grant
ready

f(...)

always ...

RAM

clk

data
address
request
grant
ready

f(...)

interface chip _bus (input wire clk);
wire request, grant, ready;
wire [47:0] address;
wire [63:0] data;
always ..
function automatic f ..

modport cpu (.., import T);
modport ram (.., import T);

endinterface

module CPU (chip _bus.cpu i10);

. 10.F(C.) ..
endmodule
P
module RAM (chip_bus.ram pins);
.. pins.f(.) ..
endmodule

module Top;
wire clk;
chip_bus a(clk);
CPU CPU(a-.cpu);
RAM RAM(a.ram);
endmodule

26

g\ll[] Interfaces

EUROPE
2004
* Interfaces localize the description of a bus

— Localizes port updates

— Allows an API description of bus interface to users

— Simple to exchange bus style

— Allows verification to be embedded

e Synthesis distributes hardware
— Hardware is instantiated in the appropriate modules
— Automatic tasks and functions must be used

— Changing an interface requires resynthesizing all modules
referring to that interface

27

)
ll[] Global Tasks, Functions

EUROPE

function automatic
int ¥ (input i1n, output out)
£ « One function, many uses
¥ * Creates generic IP for reuse
task automatic o Address issues in one place
t (input in, output out)
{
3 Synthesis
_ _ * Inlined at callsite
module mod (input in, output out);]]
. f(in, out) ... « Automatic required
. t(in, out) ...
endmodule
module mod2 (input In, output out); * SyStemve”IOg 313.
. f(in, out) ... Packages are introduced
. t(in, out) ...

endmodule V

)
Sll[] Advantages of SystemVerilog for Design

EUROPE

2004
* Improved specification

— Localization of functionality
— Exact specification of intent

e Concise constructs for focused development
— Line count correlates strongly with number of bugs

e Convenience In data abstraction
— Correct data representation for many uses
« Unifying design and verification

— Designs can specify requirements and guarantee they are
met

29

)
Sll[] Exact Specification of Intent

EUROPE
P 4
2004

« Synthesis can infer latches where they weren’t
iIntended

* Incomplete description of activation creates issues
e Tools can inform of problems if they know the intent

e Results
— Reduce synthesis/simulation mismatch
— Bugs found earlier

— Area (possibly timing) improves because unnecessary
hardware is not created

g\ll[] Always * Forms

EUROPE

30

* Always comb -- for combinational logic

— Simulation activation better matches synthesis
activation

— Warning if latches or flip-flops are inferred

« Always latch -- for latch logic

— Simulation activation better matches synthesis
activation

— Warning if a latch is not present

« Always_ff @(exp) -- for flip-flop logic
— Limits always block to one activation
— Warning if a flip-flop is not present

// and gate
always _comb
0O =aé&b;

// latch
always_latch
iIT (reset) then
I <= 0;
else
I <= data;

// Tlip-flop
always_ff @(posedge clk,
posedge rst)
iIT (reset) then

f <= 0;
else
f <= data;

)
Sl][] Multi-dimensional Array Slices

EUROPE

2004

31

« Array slices allow more than the last dimension of the
array to be accessed

reg [2:0][1:0][2:0] a;

« Unlike VHDL, in Verilog 2001, slices had to be
created using for loops

e Latches cannot be inferred by accident

)
Sll[] Advantages of SystemVerilog for Design

EUROPE

2004

* Improved specification
— Localization of functionality
— Exact specification of intent

e Concise constructs for focused development
— Line count correlates strongly with number of bugs

e Convenience In data abstraction
— Correct data representation for many uses
« Unifying design and verification

— Designs can specify requirements and guarantee they are
met

33

W

m[! Concise Constructs for Focused Design
2004

* Fewer lines of code usually means fewer bugs
* Less code requires less time to write and debug

e

{

e Language features improving conciseness
— Described earlier
»Structures, interfaces, global tasks and functions
»Multi-dimensional array slices
— Port connections
— Return, break, continue, do ... while
— Assignment operators

.

)]
Sll[] Port connections

EUROPE

004

34

mod mod (.out(out), .inl(inl), .1n2(iIn2));
e .name port expansion
mod mod (.out, .inl, .In2);
— Synthesis is simple expansion
e .* port expansion
mod mod (.%*);
mod mod (.*, .1nl(a));
— Synthesis requires analysis of instantiated module

— Implicit wires are not created
— Type checking is much stricter

.

g\ll[] C Control Flow

EUROPE

35

004

e Return, break, continue
— Interpreted as you would expect in C

e Do...while
— Interpreted as you would expect in C
— Synthesis
»Iterations must be statically determinable

)
ll[] Assignment Operators

36

EUROPE
2004
 New operators
+=, -= *= [= 0=, &=, |:, Nz <<= >>= <<=, >>>= ++, --

A[F(x)] += 1 becomes tmp = f(x); A[tmp] = A[tmp] + 1

e Assignment as an expression
— Convenient, but not recommended for synthesis

)
Sll[] Advantages of SystemVerilog for Design

EUROPE

2004

* Improved specification
— Localization of functionality
— Exact specification of intent

e Concise constructs for focused development
— Line count correlates strongly with number of bugs

* Convenience in data abstraction
— Correct data representation for many uses
« Unifying design and verification

— Designs can specify requirements and guarantee they are
met

)
Sll[] Convenience 1n Data Abstraction

EUROPE

2004

38

o Correct data representation for many uses
— Earlier
»Structure / Array duality
— 2-state and 4-state variables
— Easing the reg / wire duality
— Multiple type interpretation of the same bits
— System functions for type analysis

« Simplification of coding process
e Easier understanding

)
ll[] 2-State and 4-state variables

EUROPE
P 4
2004

39

* Verilog can represent 4-state variables: 0O, 1, X, z

e SystemVerilog
— A new 4-state variable type: logic
— A new 2-state variable types: bit, byte, int, short
»Ease connectionto C

e X, Z assignments to bit variables become 0

e Synthesis
— 4-state are preferred
— 2-state variables require strict bounds checking
»Simulation/synthesis mismatch or timing/area penalty
— Typedef can be used to allow exchange of representation

40

)
ll[] Easing the reg / wire Duality

EUROPE
2004
 Moving from RTL to an instance based description
e Replacing regs with wires

 Bit, logic, and reg types can be assigned as regs or
driven by a single instantiation

Verilog SystemVerilog
reg o, reg o;
RTL always @(a or b) always_comb
o=a é& b; o=a é& b;
Y Y

wire o; reg o,
Gate and aa (o, a, b); and aa (o, a, b);

L= L=

EUROPE

2004

)
Sll[] Multiple Types for the Same Bits

41

e Unions document various type views of the same bits
— Packed unions force alignment, unpacked do not

typedef union packed {
int signed iInt_r;
byte [3:0] byte r;
} union_t;

union_t ut;
signed Int 1;
byte [3:0] b;

1 = ut.int_r;
b = ut.byte r;

7

e Support only packed unions

Packed:

Unpacked:

=
—

— Ensures single interpretation independent of the tool

)
HS.QL] System Functions for Type Analysis

42

o $typeof returns the type of its parameter

o Sleft, $right return the left and right indexes

« $high, $low return the largest and smallest indexes
» $length returns the number of elements

e $dimensions returns the number of dimensions
 $bits returns the number of bits

for (int 1 = $left(array); i1 <= $right(array); i++) begin
array[i] = O;
end

a—

— For loop index declarations are automatic

)
Sll[] Advantages of SystemVerilog for Design

EUROPE

2004

* Improved specification
— Localization of functionality
— Exact specification of intent

e Concise constructs for focused development
— Line count correlates strongly with number of bugs

e Convenience in data abstraction
— Correct data representation for many uses
« Unifying design and verification

— Designs can specify requirements and guarantee they are
met

)
HS.LJL] Unifying Design and Verification

P 4
2004

44

 Reducing the infamous “simulation synthesis
mismatch”
— Described earlier
»Always comb, always_latch
— Unique, priority
 Documenting and checking assumptions as the
design is coded
— Assertions

* |ssues frequently found late In integration, or even
after RTL freeze, can be exposed earlier

)
“LJL] Unigque and Priority

2004

* Reduces simulation/synthesis mismatches
unique // synopsys parallel case full _case
priority // synopsys full _case

e Unique

— Simulation error if there is more than one true condition
— Simulation error If condition I1s not enumerated

e Priority

— Simulation error if condition is not enumerated
« Apply to both case statements and If...else...If chains
e Synthesis

— As if the appropriate pragma were applied

g\ll[] Assertions

EUROPE

2004

46

 Combinational assertions exist in VHDL today
 Allow designers to ensure assumptions are met

module one_hot _mux (output o, input [3:0] sel, input a, b, c, d);

assert($onehot(sel));

e Usage issues are caught early in the design cycle

e Synthesis
— Assertions are ignored
— Discuss synthesis of hardware in Food for Thought

g\ll[] Overview

EUROPE

2004

47

What is SystemVerilog?
Advantages for design

Use model and synthesis results
Food for thought

Roadmap

48

g\ll[] Flow Continuity

EUROPE
2004
e Verification Flows

— DC, VCS, Leda and Formality teams are working together
to ensure seamless interoperability

» Sharing testcases
» Agreeing on finer points in language semantics

* Implementation flow
— read -f sverilog, analyze -f sverilog, read_sverilog
— Other commands remain unchanged

* Netlists for backend flows

— Output netlists will continue to work as before
»SystemVerilog is not required

49

)
Sll[] SystemVerilog and VHDL Interoperability

EUROPE
e DesignCompiler supports a mixed design language
environment today
— Limited Verilog language forces ports to be arrays

« With SystemVerilog, structures and multi-dimensional

arrays can be used as ports between SystemVerilog
and VHDL modules

 |Interfaces are not currently crossing the language
boundary

— Specification of functions

— Instantiation interfaces and port interfaces do not have to
exactly match in SystemVerilog

)
QoR and Runtime Results

2004

50

 Two customer examples of Verilog designs rewritten
using SV constructs
— Typedefs
— Structures
— Interfaces
— Modports
— Always_* forms
— Enums
— ++ operator

51

Levels of Logic

Critical Path Length
Critical Path Slack
Total Negative Slack
No. of Violating Paths
Combinational Area
Noncombinational Area

Net Area

Cell Area

Design Area

Overall Compile Time

25.00
3.36
0.00
0.00
0.00

10809
11786
11
22595
22606
133.85

SystemVeriloq

25.00
3.36
0.00
0.00
0.00

10809
11786
11
22595
22606
132.53

)
Sll[] QoR Analysis: SDRam Controller

EUROPE
2004
Verilog SystemVerilog
Levels of Logic 10.00 10.00
Critical Path Length 6.38 6.38
Critical Path Slack -6.38 -6.38
Total Negative Slack -701.23 -701.91
No. of Violating Paths 204.00 204.00
Combinational Area 10590 10590
Noncombinational Area 14903 14907
Net Area 0) 0
Cell Area 25493 25497
Design Area 25493 25497
Overall Compile Time 105.60 105.67

g\ll[] Overview

EUROPE

2004

53

What is SystemVerilog?
Advantages for design

Use model and synthesis results
Food for thought

Roadmap

EUROPE

004

.

)
ll[] Food for Thought: Pipelines

54

Fork ... Jjoin_none describes a pipeline

always @(posedge clk)
fork begin
A=B+C*D+E-F;

out <=repeat (latency) @(posedge clk) A;

end
join_none

Becomes computation followed by flip-flops

Retiming can spread the calculation across the
Indicated number of flip flops

)
Sll[] Food for Thought: Assertions In Synthesis

EUROPE

004

.

55

assert(l<j) $display (“true”); else $display (“false”);

« Allow a user to specify in procedural code that a fact
IS true

e Then and else clauses allow testbench actions to
occur depending upon the truth of the assertion

* In the short term, synthesis will ignore the content of
the then and else clauses

e Discussion applies to both SystemVerilog and VHDL

.

)]
Sll[] Possible Uses for Assertions

EUROPE

56

004
e Use assertions to specify pragmas
»assert($onehot(...));

e Use assertions to achieve better QoR
»assert(l!=));
>mem|l] = ...;
>mem[j] = ...;
e Synthesize assertions to enable better prototyping
and emulation

— Each assertion to a different wire dictated by the then and
else clauses?

e Other ideas?

57

)
HS.QL] Food for Thought: SystemVerilog 3.1, 3.1a
2004

* Primarily testbench and assertion extensions to the
SystemVerilog design subset

— May be used in the future to improve synthesis

e Synthesizable constructs in 3.1, 3.1a

— From VHDL

»Alias

»Variable width function and task ports []
»Default arguments to tasks and functions
»Operator overloading

»Packages

— Tagged unions
— Static queues (FIFO)

58

)
ll SystemVerilog End-user Momentum

2004

“We believe Synopsys' strong support of the Accellera SystemVerilog standard, and its
use of the standard to drive the design-for-verification methodology will further
enhance verification productivity and quality.”

Rich Heye, vice president and general manager, AMD Microprocessor Business Unit

“A unified design and verification language, such as the Accellera SystemVerilog
standard, will pave the way for the productivity and efficiency improvements needed to
stay ahead of SoC challenges.”

Shrenik Mehta, director, Sun Microsystems

“SystemVerilog 3.1 will provide significant enhancements to the Verilog
language... These enhancements, when combined with good methodology, will
significantly improve design and verification productivity.”

Vassilios Gerousis, chief scientist, Infineon Technologies

“...we are impressed with SystemVerilog’s powerful design features and advanced
verification capabilities. With Synopsys’ creation of a complete design and
verification flow utilizing SystemVerilog, we expect rapid adoption of the standard.”
Ulrich Hummel, manager of CAD, Micronas Gmbh

59

)
Sll[] SystemVerilog Catalyst Program Members

2004
SAPELOGIC hiuespec Seie— |- inget ov/e

ALA. _
.M Tharaf; w Novas ®rexk ARM FPrmveEr

Aeal Intent
systems

INTRINSIX interra
P ‘Atrenta UTHERL AND b \
fa\ JASPER B st OM° L)

POy 05 W GDA Beach

W _'--_: A ve rl f]ca The JFl':TIIr.rl}l': ardom Camipam)
T A A S O D0 5
Vi FE B F Al ATrl e FEGS BERG@ET TE T

e &1 'JTE“A ENVALISSYS i isior,
atinec SiConcepts SYSTEMS P2

Tha Mrw Frostesd ™

VhdlCohen
Training

Solutions

v rit{j{}ls Silicon Interfaces™

.. hdLab WESi Ve st IO
TenisonEDA® — |

InT m_ WSFI-DB Consulting SILICDE#GLGULLTE SESUENCE
mime Aptix G7)

CoutrotMNET INDIA

EUROPE

2004

)
ll[] SystemVerilog Roadmap

60

SystemVerilog

Design
Testbench L
Assertions —

\/I/

A 4 A 4

Unified RTL Verification

VCS, Vera, Magellan

LEDA RTL Checker

Formality Design Compiler

We are moving to support
SystemVerilog across the
board.

Product Release

VCS NOW

Design Compiler NOW

LEDA NOW
Formality NOW IN BETA
VCS (SV 3.1) Q2, 2004

Vera (SV 3.1 TB) Q2, 2004
Magellan (SV 3.1) Q2, 2004

61

)
ll[] SystemVerilog More Info

EUROPE
2004
o Additional information available in the SNUG Panel Discussion

— (G1) R&D Panel -- SystemVerilog Design and Verification Implications
for Users of DesignCompiler and VCS

»3:45 to 5:15pm today

» Useful websites on SystemVerilog:
www.systemverilog.org
www.systemverilognow.com
www.accellera.org

?ll[] Summary

EUROPE
P 4
2004

62

e Migration to SystemVerilog
— Verilog designs will largely work unchanged
— Implementation flows are not affected

« SystemVerilog raises the abstraction level improving
productivity
— Improved specification
— Concise constructs for focused development
— Convenience In data abstraction
— Unifying design and verification

e Advantages are available with minimal impact to
existing flows

