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Overview

• What is SystemVerilog?
• Advantages for design
• Use model and synthesis results
• Food for thought
• Roadmap
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RTL Design and Verification Today

Specification

• Multiple point tools
• Inefficient tool interaction
• Multiple Intent definitions 

and coverage metrics

VerificationVerification
EnvironmentEnvironment

HDLs:
Verilog, VHDL

Design

HDLs, HVL, C++ 
Home Grown, etc…

VerificationVerification
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Unifying Design & Verification

DUT

Specification

� Μυλτιπλε ποιντ τοολσ
� Ινεφφιχιεντ ιντεραχτιον οφ τοολσ
� Μυλτιπλε Ιντεντ δεφινιτιονσ ανδ 
χοϖεραγε µετριχσ

� Μυλτιπλε ποιντ τοολσ
� Ινεφφιχιεντ ιντεραχτιον οφ τοολσ
� Μυλτιπλε Ιντεντ δεφινιτιονσ ανδ 
χοϖεραγε µετριχσ

� Μυλτιπλε ποιντ τοολσ
� Ινεφφιχιεντ ιντεραχτιον οφ τοολσ
� Μυλτιπλε Ιντεντ δεφινιτιονσ ανδ 
χοϖεραγε µετριχσ

Design VerificationVerification
HDL HVL
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SystemVerilog 3.1 - Verification

Automated 
Testbench Assertions Comprehensive 

APIs

SystemVerilog 3.0 - Design

Communication 
Interfaces

Advanced
Verilog

Concise Design 
Features

Datatypes
(C)

Verilog 2001

Verilog 1995

What is SystemVerilog?

• SystemVerilog Benefits
– Higher designer productivity
– Faster and smarter verification
– Evolves Verilog into first Hardware 

Description & Verification Language
• Accellera standard today
• Supported by multiple vendors
• Leading design teams are preparing 

for full-scale adoption

100% compatible with Verilog

Unifies Design and Verification for SoCs



6

SystemVerilog Benefits  

Verification SpeedVerification Speed

HDL Simulation                   HDL Simulation                   TestbenchTestbenchCoCo--SimSim OverheadOverhead

SystemVerilog      SystemVerilog      

•• 22--5X Faster Verification5X Faster Verification

SimulationSimulation

TestbenchTestbenchCoverageCoverage

Formal AnalysisFormal Analysis
AssertionsAssertions

Better VerificationBetter Verification

•• Capture Design Intent Capture Design Intent 
with Single Point of with Single Point of 
SpecificationSpecification

•• 100% Compatible 100% Compatible 
with Verilog!!!with Verilog!!!

NetlistNetlist SystemVerilog RTLSystemVerilog RTLRTLRTL

Designer PerformanceDesigner Performance
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Design Extensions of Verilog

• Communications interfaces
– Intended to describe communication among multiple modules
– Collects all of the description of a bus in one location

• Enhanced Verilog
– Specify design intent
– Support transition from reg use to wire use without changing the 

declaration
– Add full_case and parallel_case directives to the language 

• Concise design features
– Type as a parameter
– C-style assignment operators +=, ++
– Simplification of port connection on instantiation

• Datatypes (C)
– Data abstraction is improved with structures, unions
– 2-state and 4-state variables are available
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Determining Synthesizability

• Design goal
– Support common design methodologies

Multiple engineers synthesizing their own blocks 
independently 
Use of formal verification techniques to ensure that RTL 
and gates represent the same design

• Requirements of the subset
– Independent synthesis and verification of each module
– Single “correct” interpretation of every design
– Statically determined hardware
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Advantages of SystemVerilog for Design

• Improved specification
– Localization of functionality
– Exact specification of intent

• Concise constructs for focused development
– Line count correlates strongly with number of bugs

• Convenience in data abstraction
– Correct data representation for many uses

• Unifying design and verification
– Designs can specify requirements and guarantee they are 

met
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Improved Specification

• Some issues in design today:
– Adding a port to a bus, or changing the operation of a bus 

requires correct editing of all of the modules that touch that 
bus

“I don’t want to have to change all those places…”

– Synthesis tools do what you say rather than what you want
“I did not mean to specify a latch there….”

SystemVerilog has a solution
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No Localization of Functionality

Bus Instantiation

Access HW

Access HW
Module Top Module A

Module B

• Descriptions are spread throughout the design
• All designers must know details of the access
• Any modifications must be made throughout the design
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Localization of Functionality

Bus Description

Bus API Call

Bus API Call
Module Top

Module A

Module B

• Descriptions are localized
• One designer knows details of access
• Modifications (and replacements) are made in one location
• Eases understanding, debugging, and reuse

A Instantiation

B Instantiation

Bus Instantiation

Source code view:

Bus Instantion HW
Bus Access HW
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Localization of Functionality

• Language features providing localization of 
functionality
– Structures and user defined data types
– Types as parameters
– Interfaces
– Global functions
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Structures and User Defined Data Types

module fifo (clk, rstp, din_src,
din_dst, din_data,readp,writep,
dout_src,dout_dst, dout_data,
emptyp, fullp);
input             clk;
input             rstp;
input [7:0] din_src;
input [7:0] din_dst;
input [31:0] din_data;

input readp;
input             writep;
output [7:0]  dout_src;
output [7:0]  dout_dst;
output [31:0] dout_data;

output emptyp;
output            fullp;

.

.

Verilog

module fifo ( 
input clk,
input rstp;
input packet_t din,
input readp;
input writep;
output packet_t dout;
output  logic emptyp;
output  logic fullp

);

typedef struct {
bit [7:0] src;
bit [7:0] dst;
bit [31:0] data;

} packet_t;

SystemVerilog
Define Once

Easy to 
read, 

debug

Use many times
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Structures and User Defined Data Types

module fifo (clk, rstp, din_src,
din_dst, din_data2, din_data,readp,
writep, dout_src, dout_dst,
dout_data, dout_data2, emptyp, 
fullp);
input             clk;
input             rstp;
input [7:0] din_src;
input [7:0] din_dst;
input [31:0] din_data;
input [31:0]      din_data2;
input             readp;
input             writep;
output [7:0]  dout_src;
output [7:0]  dout_dst;
output [31:0] dout_data;
output [31:0]     dout_data2;
output    emptyp;
output fullp;

.
- And referencing code below

Verilog

module fifo ( 
input clk,
input rstp,
input packet_t din,
input readp,
input writep,
output packet_t dout,
output  logic emptyp,
output  logic fullp

);

typedef struct {
bit [7:0] src;
bit [7:0] dst;
bit [31:0] data;
bit [31:0] data2;

} packet_t;

SystemVerilog

Define Once

Easy to 
read, 

debug,
modify, 
reuse

Use many times
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Structure / Array Duality

• Unpacked structures have strong type checking
– As in VHDL

• Packed structures have an array overlay

• Synthesis
– Recommend unpacked structures for better area, timing

typedef struct packed {
logic [3:0] a;
logic [3:0] b;

} packed_t;

packed_t pt;
logic [7:0] array;

array[3:0] = pt.b;
array[3:0] = pt[3:0];
pt = pt;
pt = array;

typedef struct {
logic [3:0] a;
logic [3:0] b;

} unpacked_t;

unpacked_t pt;
logic [7:0] array;

array[3:0] = pt.b;    // ok
array[3:0] = pt[3:0]; // error
pt = pt;              // ok
pt = array;           // error
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Types as Parameters

module fifo #(parameter type t = int)
( 
input clk,
input rstp,
input t din,
input readp,
input writep,
output t dout,
output  logic emptyp,
output  logic fullp

);

typedef struct {
bit [7:0] src;
bit [7:0] dst;
bit [31:0] data;
bit [31:0] data2;

} packet_t;

• One module, many types

fifo int_fifo (….);
fifo packet_fifo #(packet_t) (…); 

• Creates generic IP for reuse
• Address issues in one module
• Synthesis

• Same as integer parameters

•VHDL has unconstrained arrays
•Not arbitrary types
•Avoid conversion functions 

Fifo Example:
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Interfaces

• Separate intermodule communication description and 
use

• Communication objects are described in one place
– Localizes port updates
– Allows an API description of bus interface to users
– Simple to exchange bus style 
– Allows verification to be embedded supporting early, 

thorough testing
• Functionality does not exist in VHDL today
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Top

RAMCPU

module Top;

CPU CPU();
RAM RAM();

endmodule 

module RAM ();    
…

endmodule 

module CPU ();       
…

endmodule

Source Code:

Simple Design

Synthesized Design:
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Top

clk
data

address
request
grant
ready

RAMCPU

module Top;

chip_bus a();
CPU CPU();
RAM RAM();

endmodule 

module RAM ();    
…

endmodule 

module CPU ();       
…

endmodule

interface chip_bus ();
wire        request, grant, ready;
wire [47:0] address;
wire [63:0] data;

endinterface

Synthesized Design:

Interface Instantiation
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Top

data
address
request
grant
ready

RAM

data
address
request
grant
ready

CPU

data
address
request

grant
ready

module Top;

chip_bus a(); 
CPU CPU(a);
RAM RAM(a);

endmodule 

module RAM (chip_bus pins);    
… 

endmodule 

module CPU (chip_bus io);       
… 

endmodule

interface chip_bus ();
wire        request, grant, ready;
wire [47:0] address;
wire [63:0] data;

endinterface

Synthesized Design:

Interface As A Port
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Top

data
address
request
grant
ready

RAM

data
address
request
grant
ready

CPU

data
address
request

grant
ready

module Top;

chip_bus a(); 
CPU CPU(a.cpu);
RAM RAM(a.ram); 

endmodule 

module RAM (chip_bus.ram pins);    
… 

endmodule 

module CPU (chip_bus.cpu io);       
… 

endmodule

interface chip_bus ();
wire        request, grant, ready;
wire [47:0] address;
wire [63:0] data;

modport cpu (output request...);
modport ram (input request...);

endinterface

Synthesized Design:

Interface Modports
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Top

clk
data

address
request
grant
ready

RAM

clk
data
address
request
grant
ready

CPU

clk
data

address
request

grant
ready

module Top;
wire clk;
chip_bus a(clk); 
CPU CPU(a.cpu);
RAM RAM(a.ram); 

endmodule 

module RAM (chip_bus.ram pins);    
… 

endmodule 

module CPU (chip_bus.cpu io);       
… 

endmodule

interface chip_bus (input wire clk);
wire        request, grant, ready;
wire [47:0] address;
wire [63:0] data;

modport cpu (input clk, output request...);
modport ram (input clk, input request...);

endinterface

Synthesized Design:

Interface With a Port
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Top

always ...

clk
data

address
request
grant
ready

RAM

clk
data
address
request
grant
ready

CPU

clk
data

address
request

grant
ready

module Top;
wire clk;
chip_bus a(clk); 
CPU CPU(a.cpu);
RAM RAM(a.ram); 

endmodule 

module RAM (chip_bus.ram pins);    
… 

endmodule 

module CPU (chip_bus.cpu io);       
… 

endmodule

interface chip_bus (input wire clk);
wire        request, grant, ready;
wire [47:0] address;
wire [63:0] data;

always …

modport cpu (input clk, output request...);
modport ram (input clk, input request...);

endinterface

Synthesized Design:

Interface Always Blocks
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Top

always ...

clk
data

address
request
grant
ready

RAM

clk
data
address
request
grant
ready

CPU

clk
data

address
request

grant
ready

module Top;
wire clk;
chip_bus a(clk); 
CPU CPU(a.cpu);
RAM RAM(a.ram); 

endmodule 

module RAM (chip_bus.ram pins);    
… pins.f(…) …

endmodule 

module CPU (chip_bus.cpu io);       
… io.f(…) …

endmodule

interface chip_bus (input wire clk);
wire        request, grant, ready;
wire [47:0] address;
wire [63:0] data;

always …

function automatic f …

modport cpu (…, import f);
modport ram (…, import f);

endinterface

Synthesized Design:

f(...) f(...)

Interface Functions
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Interfaces

• Interfaces localize the description of a bus
– Localizes port updates
– Allows an API description of bus interface to users
– Simple to exchange bus style 
– Allows verification to be embedded

• Synthesis distributes hardware
– Hardware is instantiated in the appropriate modules
– Automatic tasks and functions must be used
– Changing an interface requires resynthesizing all modules 

referring to that interface
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Global Tasks, Functions

function automatic
int f (input in, output out)

{
...

}

task automatic
t (input in, output out)

{
...
}

module mod (input in, output out);
... f(in, out) ...
... t(in, out) ...

endmodule

module mod2 (input in, output out);
... f(in, out) ...
... t(in, out) ...

endmodule

• One function,  many uses
• Creates generic IP for reuse
• Address issues in one place

• Synthesis
• Inlined at callsite
• Automatic required

• SystemVerilog 3.1a 
• Packages are introduced
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Advantages of SystemVerilog for Design

• Improved specification
– Localization of functionality
– Exact specification of intent

• Concise constructs for focused development
– Line count correlates strongly with number of bugs

• Convenience in data abstraction
– Correct data representation for many uses

• Unifying design and verification
– Designs can specify requirements and guarantee they are 

met
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Exact Specification of Intent

• Synthesis can infer latches where they weren’t 
intended

• Incomplete description of activation creates issues
• Tools can inform of problems if  they know the intent
• Results

– Reduce synthesis/simulation mismatch
– Bugs found earlier
– Area (possibly timing) improves because unnecessary 

hardware is not created
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Always_* Forms

• Always_comb -- for combinational logic
– Simulation activation better matches synthesis 

activation 
– Warning if latches or flip-flops are inferred

• Always_latch -- for latch logic
– Simulation activation better matches synthesis 

activation
– Warning if a latch is not present

• Always_ff @(exp) -- for flip-flop logic
– Limits always block to one activation
– Warning if a flip-flop is not present

// and gate
always_comb

o = a & b;

// latch
always_latch

if (reset) then
l <= 0;

else 
l <= data;

// flip-flop
always_ff @(posedge clk,

posedge rst)
if (reset) then

ff <= 0;
else 

ff <= data;
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• Array slices allow more than the last dimension of the 
array to be accessed

reg [2:0][1:0][2:0] a;
a[1:0] = ….;

• Unlike VHDL, in Verilog 2001, slices had to be 
created using for loops

• Latches cannot be inferred by accident

Multi-dimensional Array Slices
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Advantages of SystemVerilog for Design

• Improved specification
– Localization of functionality
– Exact specification of intent

• Concise constructs for focused development
– Line count correlates strongly with number of bugs

• Convenience in data abstraction
– Correct data representation for many uses

• Unifying design and verification
– Designs can specify requirements and guarantee they are 

met
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Concise Constructs for Focused Design

• Fewer lines of code usually means fewer bugs
• Less code requires less time to write and debug

• Language features improving conciseness
– Described earlier

Structures, interfaces, global tasks and functions
Multi-dimensional array slices

– Port connections
– Return, break, continue, do … while
– Assignment operators
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Port connections

mod mod (.out(out), .in1(in1), .in2(in2));

• .name port expansion
mod mod (.out, .in1, .in2);

– Synthesis is simple expansion
• .* port expansion 

mod mod (.*);
mod mod (.*, .in1(a));

– Synthesis requires analysis of instantiated module
– Implicit wires are not created
– Type checking is much stricter
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C Control Flow

• Return, break, continue
– Interpreted as you would expect in C

• Do…while
– Interpreted as you would expect in C
– Synthesis

Iterations must be statically determinable
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Assignment Operators 

• New operators
+=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=, <<<=, >>>=, ++,  --

A[f(x)] += 1 becomes tmp = f(x); A[tmp] = A[tmp] + 1

• Assignment as an expression
– Convenient, but not recommended for synthesis
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Advantages of SystemVerilog for Design

• Improved specification
– Localization of functionality
– Exact specification of intent

• Concise constructs for focused development
– Line count correlates strongly with number of bugs

• Convenience in data abstraction
– Correct data representation for many uses

• Unifying design and verification
– Designs can specify requirements and guarantee they are 

met
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Convenience in Data Abstraction

• Correct data representation for many uses
– Earlier

Structure / Array duality
– 2-state and 4-state variables 
– Easing the reg / wire duality
– Multiple type interpretation of the same bits
– System functions for type analysis

• Simplification of coding process
• Easier understanding
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2-state and 4-state variables

• Verilog can represent 4-state variables: 0, 1, x, z
• SystemVerilog

– A new 4-state variable type: logic
– A new 2-state variable types: bit, byte, int, short

Ease connection to C
• x, z assignments to bit variables become 0
• Synthesis

– 4-state are preferred
– 2-state variables require strict bounds checking

Simulation/synthesis mismatch or timing/area penalty
– Typedef can be used to allow exchange of representation
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Easing the reg / wire Duality

• Moving from RTL to an instance based description
• Replacing regs with wires
• Bit, logic, and reg types can be assigned as regs or 

driven by a single instantiation

reg o;
always @(a or b)

o = a & b;

reg o;
always_comb

o = a & b;

wire o;
and aa (o, a, b);

reg o;
and aa (o, a, b);

RTL

Gate

Verilog SystemVerilog
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Multiple Types for the Same Bits

• Unions document various type views of the same bits
– Packed unions force alignment, unpacked do not

• Support only packed unions
– Ensures single interpretation independent of the tool

typedef union packed {
int signed int_r;
byte [3:0] byte_r;

} union_t;

union_t ut;
signed int i;
byte [3:0] b;

i = ut.int_r;
b = ut.byte_r;

Packed:

Unpacked:
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System Functions for Type Analysis

• $typeof returns the type of its parameter
• $left, $right return the left and right indexes
• $high, $low return the largest and smallest indexes
• $length returns the number of elements
• $dimensions returns the number of dimensions
• $bits returns the number of bits

– For loop index declarations are automatic

for (int i = $left(array); i <= $right(array); i++) begin
array[i] = 0;
end
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Advantages of SystemVerilog for Design

• Improved specification
– Localization of functionality
– Exact specification of intent

• Concise constructs for focused development
– Line count correlates strongly with number of bugs

• Convenience in data abstraction
– Correct data representation for many uses

• Unifying design and verification
– Designs can specify requirements and guarantee they are 

met
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Unifying Design and Verification

• Reducing the infamous “simulation synthesis 
mismatch”
– Described earlier

Always_comb, always_latch
– Unique, priority

• Documenting and checking assumptions as the 
design is coded
– Assertions

• Issues frequently found late in integration, or even 
after RTL freeze, can be exposed earlier
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Unique and Priority

• Reduces simulation/synthesis mismatches

• Unique 
– Simulation error if there is more than one true condition
– Simulation error if condition is not enumerated

• Priority
– Simulation error if condition is not enumerated

• Apply to both case statements and if…else…if chains
• Synthesis

– As if the appropriate pragma were applied

unique  // synopsys parallel_case full_case
priority // synopsys full_case
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Assertions

• Combinational assertions exist in VHDL today
• Allow designers to ensure assumptions are met

• Usage issues are caught early in the design cycle
• Synthesis

– Assertions are ignored
– Discuss synthesis of hardware in Food for Thought

module one_hot_mux (output o, input [3:0] sel, input a, b, c, d);

assert($onehot(sel));



47

Overview

• What is SystemVerilog?
• Advantages for design
• Use model and synthesis results
• Food for thought
• Roadmap
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Flow Continuity

• Verification Flows
– DC, VCS, Leda and Formality teams are working together 

to ensure seamless interoperability
Sharing testcases
Agreeing on finer points in language semantics

• Implementation flow 
– read -f sverilog, analyze -f sverilog, read_sverilog
– Other commands remain unchanged

• Netlists for backend flows
– Output netlists will continue to work as before

SystemVerilog is not required
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SystemVerilog and VHDL Interoperability

• DesignCompiler supports a mixed design language 
environment today
– Limited Verilog language forces ports to be arrays

• With SystemVerilog, structures and multi-dimensional 
arrays can be used as ports between SystemVerilog 
and VHDL modules

• Interfaces are not currently crossing the language 
boundary
– Specification of functions
– Instantiation interfaces and port interfaces do not have to 

exactly match in SystemVerilog
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QoR and Runtime Results

• Two customer examples of Verilog designs rewritten 
using SV constructs
– Typedefs
– Structures
– Interfaces
– Modports
– Always_* forms
– Enums
– ++ operator
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QoR Analysis: Risc Core

Verilog SystemVerilog

Levels of Logic 25.00 25.00
Critical Path Length 3.36 3.36
Critical Path Slack 0.00 0.00
Total Negative Slack 0.00 0.00
No. of Violating Paths 0.00 0.00
Combinational Area 10809 10809
Noncombinational Area 11786 11786
Net Area 11 11
Cell Area 22595 22595
Design Area 22606 22606
Overall Compile Time 133.85 132.53
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QoR Analysis: SDRam Controller

Verilog SystemVerilog

Levels of Logic 10.00 10.00
Critical Path Length 6.38 6.38
Critical Path Slack -6.38 -6.38
Total Negative Slack -701.23 -701.91
No. of Violating Paths 204.00 204.00
Combinational Area 10590 10590
Noncombinational Area 14903 14907
Net Area 0 0
Cell Area 25493 25497
Design Area 25493 25497
Overall Compile Time 105.60 105.67
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Overview

• What is SystemVerilog?
• Advantages for design
• Use model and synthesis results
• Food for thought
• Roadmap
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Food for Thought: Pipelines

• Fork … join_none describes a pipeline

always @(posedge clk)
fork begin

A = B + C * D + E - F;
out <= repeat (latency) @(posedge clk) A;

end
join_none

• Becomes computation followed by flip-flops
• Retiming can spread the calculation across the 

indicated number of flip flops
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Food for Thought: Assertions in Synthesis

assert(I<j) $display (“true”); else $display (“false”);

• Allow a user to specify in procedural code that a fact 
is true

• Then and else clauses allow testbench actions to 
occur depending upon the truth of the assertion

• In the short term, synthesis will ignore the content of 
the then and else clauses

• Discussion applies to both SystemVerilog and VHDL
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Possible Uses for Assertions

• Use assertions to specify pragmas
assert($onehot(…));

• Use assertions to achieve better QoR
assert(I!= j);
mem[I] = …;
mem[j] = …;

• Synthesize assertions to enable better prototyping 
and emulation
– Each assertion to a different wire dictated by the then and 

else clauses?
• Other ideas?
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Food for Thought: SystemVerilog 3.1, 3.1a

• Primarily testbench and assertion extensions to the 
SystemVerilog design subset
– May be used in the future to improve synthesis

• Synthesizable constructs in 3.1, 3.1a
– From VHDL

Alias
Variable width function and task ports []
Default arguments to tasks and functions
Operator overloading
Packages

– Tagged unions 
– Static queues (FIFO)
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SystemVerilog End-user Momentum

“… we are impressed with SystemVerilog’s powerful design features and advanced 
verification capabilities. With Synopsys’ creation of a complete design and 

verification flow utilizing SystemVerilog, we expect rapid adoption of the standard.”
Ulrich Hummel, manager of CAD, Micronas Gmbh

“… we are impressed with SystemVerilog’s powerful design features and advanced 
verification capabilities. With Synopsys’ creation of a complete design and 

verification flow utilizing SystemVerilog, we expect rapid adoption of the standard.”
Ulrich Hummel, manager of CAD, Micronas Gmbh

“SystemVerilog 3.1 will provide significant enhancements to the Verilog 
language… These enhancements, when combined with good methodology, will 

significantly improve design and verification productivity.”
Vassilios Gerousis, chief scientist, Infineon Technologies

“SystemVerilog 3.1 will provide significant enhancements to the Verilog 
language… These enhancements, when combined with good methodology, will 

significantly improve design and verification productivity.”
Vassilios Gerousis, chief scientist, Infineon Technologies

“A unified design and verification language, such as the Accellera SystemVerilog 
standard, will pave the way for the productivity and efficiency improvements needed to 

stay ahead of SoC challenges.”
Shrenik Mehta, director, Sun Microsystems

“A unified design and verification language, such as the Accellera SystemVerilog 
standard, will pave the way for the productivity and efficiency improvements needed to 

stay ahead of SoC challenges.”
Shrenik Mehta, director, Sun Microsystems

“We believe Synopsys' strong support of the Accellera SystemVerilog standard, and its 
use of the standard to drive the design-for-verification methodology will further 

enhance verification productivity and quality.”
Rich Heye, vice president and general manager, AMD Microprocessor Business Unit

“We believe Synopsys' strong support of the Accellera SystemVerilog standard, and its 
use of the standard to drive the design-for-verification methodology will further 

enhance verification productivity and quality.”
Rich Heye, vice president and general manager, AMD Microprocessor Business Unit
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WSFDB Consulting

VhdlCohen
Training

SystemVerilog Catalyst Program Members
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Unified RTL Verification

SystemVerilog Roadmap

NOWLEDA

ReleaseProduct

Q2, 2004Magellan (SV 3.1)

Q2, 2004Vera (SV 3.1 TB)

Q2, 2004VCS (SV 3.1)

NOW IN BETAFormality

NOWDesign Compiler
NOWVCS

We are moving to support 
SystemVerilog across the 
board.

SystemVerilog

Design 
Testbench
Assertions

Design CompilerFormality

LEDA  RTL Checker

VCS, Vera, Magellan
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SystemVerilog  More Info

• Additional information available in the SNUG Panel Discussion
– (G1) R&D Panel -- SystemVerilog Design and Verification Implications 

for Users of DesignCompiler and VCS
3:45 to 5:15pm today

• (G1and VC
• Useful websites on SystemVerilog:

www.systemverilog.org
www.systemverilognow.com
www.accellera.org
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Summary

• Migration to SystemVerilog
– Verilog designs will largely work unchanged
– Implementation flows are not affected

• SystemVerilog raises the abstraction level improving 
productivity
– Improved specification
– Concise constructs for focused development
– Convenience in data abstraction
– Unifying design and verification

• Advantages are available with minimal impact to 
existing flows


